Derwent Vale Primary and Nursery School *Science skills progression document. | SLS Science Planning
& Assessment Board | Knowle | edge & Unde | erstanding | | Working Scientifically | | | | | | |--|---|---|---|---|---|--|--|--|--|--| | | Explaining Science | | Classification | Designing
Experiments | | Data, Tables
<i>G</i> raphs | & Making Conclusions | | | | | | EYFS→ KS1 | | → Secure | LKS2 — | → Secure | UKS2 → Secure | | | | | | | EYFS | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 | Year 6 | Year 6+ | | | | Explaining Science | I remember simple
science facts within
an activity | I remember simple
science facts within
a topic | I remember a range
of science facts
within a topic | I am using pre-
learning to build
connected knowledge | I connect knowledge
within a topic & from
pre-learning | I connect knowledge
between topics &
from pre-learning | I connect knowledge
across science & the
wider curriculum | I connect knowledge
fluently across
science & curriculum | | | | | I use science words
during an activity | I use å remember
relevant science
words during activity | I use & remember science words over time (short term) | I remember science
words I have used
before (longer term) | I remember & use
science words
correctly (apply) | I begin to use
complex science
words correctly | I use complex
science words
correctly (fluency) | I use complex
science words
accurately & fluently | | | | | I describe what is
happening using
words & actions | I describe what is
happening using
science | I use science to
describe & recall
what I have seen | I begin to use
science models to
describe (sequence) | I use science models
to describe
(what, where) | I use science models
to describe & begin
to explain (why, how) | I use science models
to describe & explain
(why, how, logical) | I begin to apply
science models to
explain new events | | | | | I match appropriate
pictures & words to
label diagrams | I add science word
labels to diagrams | I add science labels
& information (help)
to diagrams | I add science labels
& information to
diagrams | I annotate diagrams
to help describe &
explain | I begin to create &
annotate my own
2D/3D diagrams | I create & annotate
my own 2D/3D
diagrams | I create & annotate
my own complex
2D/3D diagrams | | | | | I begin to use
science facts to
explain my answer | I select science
facts to use in an
answer | I select relevant
science facts to use
in an answer | I link relevant facts
together in an
answer | I 'cluster' related
facts together into
points (recalled) | I select å prioritise
facts to create an
argument/answer | I present a clear &
logical argument /
answer | I present an
extended & logical
argument / answer | | | | Classification | I sort using pictures or instructions | I sort using simple
yes/no statements | I use simple spider
keys with obvious
differences | I use large spider
keys with obvious
differences | I use a range of
spider keys with fine
differences | I construct spider &
use number keys | I construct both
spider å number
keys | I construct both
spider & number
keys (complex) | | | | | I group by familiar
features (size,
colour, shape, etc) | I group by
difference or
similarity | I group by
difference,
similarity or change | I create groups for
sorting
(create criteria) | I create appropriate
groups for sorting
(create criteria) | I group & sub-group
by easily observation
(create criteria) | I group & sub-group
by fine observation
(create criteria) | I group & re-group
using combinations
of criteria | | | | | I use my senses to identify properties of materials | I link properties of
materials to an
application (help) | I link properties of
materials to an
application | I combine properties
required for an
application (help) | I describe combined properties required for an application | I explain how
properties suit an
application | I explain the
science behind a
range of properties | I describe how
material properties
can change | | | Copyright©2023 P Watkins Learning Solutions Ltd Explaining Science Classification Researching & communicating: Use secondary sources to find & organise relevant information Observing & measuring over time: Over short (seconds / minutes) or long (days / months) periods of time One variable changed; others are kept the same. Use words or numbers Identification & classification: Sorting into groups based upon criteria Finding patterns: Patterns emerge from observation Problem solving: Applying science knowledge to find answers WS Skills are taught & practised through a range of Enquiry Type investigation Designing Experiments | | EYFS KS1 → Secure | | | LKS2 — Secure | | UKS2 → Secure→ | | | |-------------|--|---|--|---|--|---|---|--| | | EYFS | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 | Year 6 | Year 6+ | | erns | I recognise, create
& describe simple
patterns (e.g. size) | I recognise, create
å describe simple
number patterns | I describe simple
features & patterns
in data & charts | I describe simple
patterns in data,
charts & graphs | I describe simple
patterns, trends &
relationships in data | I describe patterns,
trends &
relationships in data | I describe changing
patterns, trends &
relationships | I compare changing
patterns, trends &
relationships | | Patterns | I begin to use 'more
or less' to compare
observations | I use 'more or less'
to compare numbers | I see obvious
differences in sets
of numbers | I see subtle
differences in sets
of numbers | I see differences
(error) in repeated
data | I spot anomalous
data that doesn't fit
the pattern | I spot anomalous
data & explain from
the method | I deal with
anomalous data to
increase reliability | | Isions | I talk about changes
through my senses
during activities | I describe the
changes that are
happening | I describe the
changes that have
happened | I describe my
results by linking
cause & effect | I describe trends &
begin to use science
models to explain | I use data in my
conclusion & science
models to explain | I use primary & secondary data in my conclusions | I use a range of
data in conclusions
to support validity | | Conclusions | I explore 'what if'
questions through
talk & play | I explore different
ways to do things
through play | I suggest a
different way to do
things with help | I suggest
improvements to my
method | I suggest sensible
improvements to my
method | I identify strengths
& weaknesses &
improvements | I suggest limitations
(data) & practical
improvements | I suggest limitations
(use data) & justify
improvements | ### Working Scientifically - word lists Axis = reference line drawn on a graph to show the range of data for each variable (shows values) Block chart = visual toll to show data/counts as bars built up by adding component blocks. Used to compare data visually Cause = the variable we chose to change in an investigation Data = a measured or counted outcome for a variable (numbers) Effect = the variable that changes when we change the cause Experiment = investigation that looks for a link between variables (fair or comparative test) Observation = sensed outcome for a variable (described in words) Pictogram = chart that uses pictures to represent data Prediction = suggests what might happen based upon prior knowledge or experience (not a guess) Results table = way of presenting data from an investigation Risk = dangers when doing an investigation, using equipment or working in an area Standard units = a quantity of a variable that is used as a standard measure (e.g. litre, meter, gram, etc) Variable = a factor that can change ### LKS2 (plus KS1) Bar chart/graph = visual tool that uses bars to compare discrete data Comparative test = fair test comparing discrete differences Conclusion = the answer you give to a guestion (based upon data) Continuous data = values are numbers (result from counting/measuring) Coordinate = used to plot data (x/y) on a graph Data interval =numerical gap between data points for a variable Data point = a coordinate for a variable Data range = maximum & minimum values for a variable Discrete data = values are distinct/separate (e.g. male/female; Fair test = an investigation where only one variable is changed (cause); all others are kept the same and at their best value Line graph = visual tool that shows a relationship trend between two continuous variables (it is essentially a scatter graph) Method = ordered sequence of steps taken during an investigation, It can be written or in diagram form Prediction (correlation/relationship) = describes the expected trend for two variables (cause & effect) that are linked Prediction (scientific/causal) = suggestion as to what might happen based upon prior knowledge, experience or observation, Links the cause with the predicted effect. Does not have to describe the trend Spider key = branching classification key where each branch has a yes/no choice (dichotomous key) leading to further choices Trend = the outcome when two variables (cause & effect) are linked UKS2 (plus KS1/LKS2) Anomalous data = data that does not fit a pattern Controlled variable = variables kept at the same value so they do not influence the dependent variable in a fair test # Making Conclusions Data set = vales for repeated data Data spread = variation of the data away from a mean (often due to imprecise measuring or when the controlled variable have not been kept the same) Dependent variable = changed (effect) as a result of changing another. This is observed or measured and demonstrates a relationship in a fair test Hypothesis = a reasoned prediction based upon theory, experience or direct observation Independent variable = chosen variable (cause) changed in a fair test. Mean = 'average' value from a data set Number key = classification key that is a written, condensed version of a spider key Precision = how similar your repeated data is (good technique & equipment choice) Primary data = your experimental data or observations from an investigation Reliability = if your data can be repeated (i.e. no error). Can be improved through collecting repeated values and calculating a mean Results table (complex) = Table that contains multiple columns to show repeated data, calculations or a variety of features of a variable Risk assessment = formal assessment of risk leading to improved safety recommendations or change in practice Secondary data = researched data or observations. It can also be data gathered from others doing a similar experiment, Used to compare/support Trend line = line drawn roughly between coordinates to show the trend (does not have to go through all data points) Valid data = reliable, accurate & no bias or error (we are measuring what is expected)